

(A)

(C)

(A)

24.

HI > HBr > HCl > HF

HCl > HF > HBr > HI

 $Al(OH)Cl_2$

Date Planned://_ Actual Date of Attempt://_		d: _/_/_	Daily Tutorial Sheet-2	Expected Duration : 90 Min				
		of Attempt : / /	JEE Main (Archive)	Exact Duration :				
6.	Amon	g Al_2O_3 , SiO_2 , P_2O_3 and SO_2	the correct order of acid strength	h is : (2004)				
	(A)	$SO_2 < P_2O_3 < SIO_2 < Al_2O_3$		$P_2 < SO_2 < P_2O_3$				
	(C)	$Al_2O_3 < SiO_2 < SO_2 < P_2O_3$	(D) $Al_2O_3 < Side$	$O_2 < P_2O_3 < SO_2$				
7.	Which	Which of the following statements regarding helium is incorrect? (200						
	(A)	It is used to fill gas in ballo	ons instead of hydrogen because	it is lighter and non-inflammable				
	(B)	It is used as a cryogenic ag	ent for carrying out experiments	at low temperatures				
	(C)	It is used to produce and s	ustain powerful superconducting	magnets				
	(D)	It is used in gas-cooled nuc	elear reactors					
18.	Which among the following factors is the most important in making fluorine the strongest oxidizing							
	haloge	ens?		(2004)				
	(A)	Hydration enthalpy	(B) Ionization 6	enthalpy				
	(C)	Electron affinity	(D) Bond disso	ociation energy				
9 .	Beryllium and aluminium exhibits many properties which are similar. But, the two elements differ in :							
	(A)	forming covalent halides		(2004)				
	(B)	forming polymeric hydrides						
	(C)	exhibits maximum covalency in compounds						
	(D)	exhibiting amphoteric natu	re in their oxides					
20.	Alumi	Aluminium chloride exists as dimer, $\mathrm{Al_2Cl_6}$ in solid state as well as in solution of non-polar solvent						
	such	as benzene.		(2004)				
	(A)	$\left[\mathrm{Al}(\mathrm{OH})_3\right]^{3-} + 3\mathrm{HCl}$	(B) $\left[\text{Al}(\text{H}_2\text{O})_6\right]^{\circ}$	³⁺ + 3Cl ⁻				
	(C)	$Al^{3+} + 3Cl^{-}$	(D) $Al_2O_3 + 6H$	ICl				
21.	The m	nolecular shapes of SF ₄ , CF ₄	and XeF ₄ are :	(2005)				
	(A)	the same with 2, 0 and 1 lone pairs of electrons on the central atom respectively						
	(B)	the same with 1, 1 and 1 lo	one pair of electrons on the centra	al atom respectively				
	(C)	different with 0, 1 and 2 lo	ne pairs of electrons on the centra	al atom respectively				
	(D)	(D) different with 1, 0 and 2 lone pairs of electrons on the central atom respectively						
22 .	The n	The number of hydrogen atom(s) attached to phosphorus atom in hypophosphorous acid is : (2005)						
	(A)	zero (B) tw	o (C) one	(D) three				

Heating an aqueous solution of a liminium chloride to dryness will give :

 $\mathrm{Al_2O_3}$

(B)

(D)

(C)

HF > HCl > HBr > HI

HI > HCl < HF > HBr

(D)

 $AlCl_3$

 Al_2Cl_6

(2005)

25 .	In	silicon	dioxide	٠

- (A) there are double bonds between silicon and oxygen atoms
- **(B)** silicon atom is bounded to two oxygen atoms
- **(C)** each silicon atom is surrounded by two oxygen atoms and each oxygen atom is bounded to two oxygen atoms
- **(D)** each silicon atom is surrounded by four oxygen atoms and each oxygen atom is bounded to two silicon atoms

26. The structure of diborane (B_2H_6) contains :

(2005)

- (A) four 2c-2e bonds and four 3c-2e bonds (B) two 2e-2e bonds and two 3c-3e bonds
- (C) two 2c-2e bonds and four 3c-2e bonds (D) four 2c-2e bonds and two 3c-2e bonds

27. What products are expected from the disproportionation reaction of hypochlorous acid?

(2006)

(A) $HClO_3$ and Cl_2O

(B) $HClO_2$ and $HClO_4$

(C) HCl and Cl₂O

(**D**) HCl and HClO₃

28. Which of the following statement is true?

(2006)

- (A) H_3PO_3 is a stronger acid than H_2SO_3
- (B) In aqueous medium HF is a stronger acid than HCl
- (C) $HClO_4$ is a weaker acid than $HClO_3$
- **(D)** HNO $_3$ is a stronger acid than HNO $_2$
- **29.** The increasing order of the first ionization enthalpies of the elements B, P, S and F (Lowest first) is:
 - (A) B < P < S < F

(B) B < S < P < F

(2006)

(C) F < S < P < B

(**D**) P < S < B < F

30. Identify the incorrect statement among of the following:

- (2007)
- (A) Br₂ reacts with hot and strong NaOH solution to give NaBr and H₂O
- **(B)** Ozone reacts with SO_2 to give SO_3
- (C) Silicon reacts with NaOH(aq) in the presence of air to give Na_2SiO_3 and H_2O
- (D) Cl_2 reacts with excess of NH_3 to give N_2 and HCl